

Constraints are predicate logical formulas, e.g.

X ∈ {1, …, 9}, Y = 3.7, Z ≤ Y

for describing and efficient solving of problems with incomplete information.

"Holy Grail of programming” (E.C. Freuder)
CSP Constraint Satisfaction Problem P = (X, D, C)

X = {x1, x2, . . . , xn} (set of variables)

D = {D1,D2, . . ., Dn} (finite domains, Di is the domain of xi)

C = {c1, c2, . . . , cm} (Each constraint ci is a relation defined over a subset of the variables X)

A solution of a CSP P is a complete instantiation satisfying all constraints of the CSP P.

A constraint satisfaction optimization problem (CSOP) Popt = (X,D,C,f) is defined as a CSP

with an optimization function f that maps each solution to a numerical value to be minimized or

maximized, respectively.

Motivation

The Complexity of Constraint Problems

Since the search space of constraint satisfaction problems (CSPs), and consequently also the solution time,

is very big, we are always interested in a speed-up of the solution process. There are various ways to

describe a CSP in practice and consequently, the problem can be modeled by different combinations of

constraints, which results in differences in resolution speed and behavior.

Hence, the diversity of models and constraints for a given CSP offers us an opportuni-

ty to improve the problem solving process by using another model in which a subset of

constraints is replaced with a constraint which combines the original ones but offers a

faster solution process.

Definitions

The Warehouse Location Problem

The Improvement Idea

The solution speed and behavior of a CSP depends amongst other things on the number of backtracks in the depth-first

search of the solution process and redundancy in the propagation of constraints.

We developed a new approach for the optimization of CSPs, where singleton constraints or sets of constraints are substi-

tuted by regular constraints which are combined and minimized. The aim of this CSP reformulation is on the one hand to

reduce slowing-down redundancy in constraints over shared variables and on the other hand to remove origins of back-

tracks in the search.

Optimizing Constraint Satisfaction Problems by Regulariza-

tion for the Sample Case of the Warehouse Location Problem

Sven Löffler, Ke Liu and Petra Hofstedt ({sven.loeffler, Liuke, hofstedt}@b-tu.de)

Regularization

Scalar and Sum

A given scalar constraint scalar(X, C, R, r) can be replaced by an regular constraint regular(X, M) with

DAG M = (Q, ∑, δ, qinitial, F).

 Q = {Q0, ..., Qn+1}, where Q0 contains only q0,0, Qn+1 contains only qn+1,0

 In each state qi,j ∈ Q \ {qn+1,0} the j represents the partial scalar product ∑ xk * ck, where each xk has

the value of the k-th edge on the path q0,0 → qi,j .

 ∑ = the union of the domains D of the variables X

 δ = is a function Q x ∑ → Q

 Let i ∈ {0, ..., n} then it holds δ(qi,p , s) = qi+1,p +s*c , if s is a possible value for the scalar product

scalar(X, C, R, r).

 It holds (qn,p, s) = qn+1,0 if p is in relation R with s

 qinitial = q0,0

 F = {qn+1,0}

The sum constraint sum(X, R, r) can be interpreted as special version of the scalar constraint, where the

coefficients are all equal to 1 (ci = 1, i ∈{1, ..., n}). Thus, we can use the same transformation as for the

scalar constraint scalar(X, {1, ..., 1}, R, r).

If then

We consider only ifThen(cif, cthen) constraints, where

 - the variables of both involved constraints are disjoint: scope(cif)∩scope(cthen) = {}.

 - transformations for cif and cthen into regular constraints (crif and crthen) exist.

Let be Mif the DAG used in crif and Mthen the DAG used in crthen.

MifThen = (Mif ° Mthen) ꓴ (M┐if ° Mall)

A regular constraint, which uses the automaton MifThen, where M┐if is the complement

automaton of Mif and Mall is an automaton which accepts all words which have the sa-

me length as the accepted words of Mthen, can be used as a replacement for the ifThen

(cif, cthen) constraint.

Future work includes a comparison and potentially an integration with work, e.g. the tabulation transformation of CSPs from [1]. Furthermore, more direct transformations from global cons-

traints to the regular constraint must be developed. The approach of direct transformations must be merged with the approach of general regularization for small sub CSPs.

[1] Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.Z.: Automatic discovery and exploitation of promising subproblems for tabulation. In: Hooker, J.N. (ed.) Principles and Practice of Cons-

traint Programming - 24th International Conference, CP 2018, Lille, France, August 27-31, Proceedings. LNCS, vol. 11008, pp. 3-12. Springer (2018). https://doi.org/10.1007/978-3-319-98334-9 1

Future Work

The Sum constraint sum(X, R, r) takes an array of variables X = {x1, ..., xn}, a relation R ∈ {<, ≤

=, >, ≥, ≠} and a result variable r as input. Its successful propagation ensures that the sum of the

variables in X is in relation R to the result r.

sum(X, R, r) = (∑ xi) R r

The IfThen constraint ifThen(cif, cthen) takes two

constraints cif and cthen as input and guarantees that,

if the first constraint cif is fulfilled, also the second

constraint cthen is fulfilled.

ifThen(cif, cthen) = satisfied(cif) → cthen

The Scalar constraint scalar(X, C, R, r) takes an array of variables

X = {x1, ..., xn}, an array of corresponding integer coefficients C =

{c1, ..., cn}, a relation R ∈ {<, ≤ =, >, ≥, ≠} and a result variable r as

input. Its successful propagation ensures that the scalar product of

X and C is in relation R to the result r.

 scalar(X, C, R, r) = (∑ xi * ci) R r
i = 1

n
The Regular Membership Constraint obtains a DAG M = (Q, ∑, Δ, q0, F) and an ordered set of

variables {x1, x2, . . . , xn} = X with domains D = {D1, D2, …,Dn}, ∀ i ∈ {1, …, n}, Di ∈ ∑ as in-

put and guarantees that every sequence d1d2...dn of values for x1, x2, . . . , xn must be a word of the

regular language recognized by the DAG M.

 regular(X, M) = { w1, w2, …, wn |∀ i ∈ {1,…,n}, wi ∈ Di, (w1, w2, …, wn) ∈ L(M)}.

A Directed Acyclic Graph (DAG) is a DFA M = (Q, ∑, δ, qinitial, F), where the states q ∈ Q are

partitioned into levels Q = {Q1, ..., Qn}, Qi = {qi,1, qi,2, ...} | i ∈ {1, ..., n}, the initial state qinitial is

the only element of Q1, the final states are the members of the last level of states (F = Qn), and

transitions are only allowed from a state qi,j in level Qi to a state qi+1,k in level Qi+1.

The Benefit of Regularization - Removing (Unwanted) Redundancy

The reduction of states and transitions. M1 and M2 have together 10 states and 12 tran-

sitions. M3, the intersected automaton of M1 and M2, has only 6 states and 6 transitions.

The Benefit of Regularization - Removing Backtracks

Consider a CSP P = (X,D,C), where X = {x1, x2, x3}, D = {D1, D2, D3 |

D1 = {0, 1, 2}, D2 = D3 = {0, 1}} and C = {c1, c2, c3}, with c1 = (x1 ≠

x2), c2 = (x1 ≠ x3) and c3 = (x2 ≠ x3).

Some search strategies set x1 to value 0 or 1, which cannot satisfy the

CSP, so backtracking is necessary. If the

well-known alldifferent constraint is used,

then no backtracking is necessary. But

what happens if we change c1 to x1 > x2? It

is no longer obvious that we can substitute

c1, c2 and c3 with an alldifferent constraint.

But we still have the situation that common

search strategies assign 1 to x1, so that backtracking is necessary again.

The substitution of the constraints c1, c2 and c3 by one regular con-

straint cr = {{x1, x2, x3}, M4} removes backtracking from the search.

The DAG M4 is created by the intersection of the three automatons of

the regular representations of c1, c2 and c3.

The Model

The Model

P = (X, D, C, f), where X = Xws ꓴ Xwc ꓴ Xsc ꓴ {xtc}, D

= Dws ꓴ Dwc ꓴ Dsc ꓴ {Dtc}, C = Cscalar ꓴ Ccounts ꓴ

Ccountw ꓴ CifThen ꓴ {csum} and f = minimize(xtc).

The variables in Xws are binary variables represent,

whether a warehouse i supplies a store j (set to 1) or

not (set to 0).

Each binary variable in Xwc with domain Dwc = {0,

fc} describes the costs for warehouse i, whether it is

used (set to fc) or not (set to 0).

Each variable in Xsc describes the cost of a store

based on the information by which warehouse it is

supplied. For example, if store i is supplied by ware-

house j then the i-th variable in Xsc is instantiated by

Mi,j, where the matrix M represents the supply cost

of each store to supply a warehouse.

The variable xtc with domain Dtc = {0, ...,infinity}

describes the total costs for suppling all stores. The

goal is it to minimize these costs (f = minimize(xtc)).

The Results

