Semantic Relational Learning

Nada Lavrač

Jožef Stefan Institute Ljubljana, Slovenia

Talk overview

- Advances in Relational Learning
 - Background: Machine Learning (ML)
 - Relational Learning (RL)
 - Semantic Relational Learning (SRL)
- Advances in Network Analysis for SRL
- Conclusions and future work

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	knowledge discoverv	
01	17	myope	no	reduced	NONE	fuero dete	
O2	23	myope	no	normal	SOFT	from data	
O3	22	myope	yes	reduced	NONE		
O4	27	myope	yes	normal	HARD		
O5	19	hypermetrope	no	reduced	NONE		
06-013						Machine Learning	
O14	35	hypermetrope	no	normal	SOFT	Machine Leanning	
O15	43	hypermetrope	yes	reduced	NONE		
O16	39	hypermetrope	yes	normal	NONE		
017	54	myope	no	reduced	NONE		
O18	62	myope	no	normal	NONE		model netterne
019-023							model, patterns,
O24	56	hypermetrope	yes	normal	NONE		
C	lata						

Given: transaction data table, a relational database, ... **Find:** a classification model, a set of interesting patterns

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
O24	56	hypermetrope	yes	normal	NONE

data

Given: transaction data table, a set of text documents, ... **Find:** a classification model, a set of interesting patterns

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
O1	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
O17	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
O19-O23					
O24	56	hypermetrope	yes	normal	NONE

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	
01	17	myope	no	reduced	NONE	
O2	23	myope	no	normal	SOFT	
O3	22	myope	yes	reduced	NONE	
O4	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	Data Mining
06-013						
O14	35	hypermetrope	no	normal	SOFT	
O15	43	hypermetrope	yes	reduced	NONE	V
O16	39	hypermetrope	yes	normal	NONE	
O17	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	
019-023						
O24	56	hypermetrope	yes	normal	NONE	

- lenses=NONE ← tear production=reduced
- lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope
- lenses=SOFT ← tear production=normal AND astigmatism=no
- lenses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

 $\mathsf{lenses}{=}\mathsf{NONE} \leftarrow$

First machine learning algorithms for

 Decision tree and rule learning in 1970s and early 1980s by Quinlan, Michalski et al., Breiman et al., ...

Characterized by

- Learning from data stored in a single data table
- Relatively small set of instances and attributes
- Lots of ML research followed in 1980s
 - Numerous conferences ICML, ECML, ... and ML sessions at AI conferences IJCAI, ECAI, AAAI, ...
 - Extended set of learning tasks and algorithms addressed

Second Generation Machine Learning

Developed since 1990s:

- Focused on data mining tasks characterized by large datasets described by large numbers of attributes
- KDD process:

Second Generation Machine Learning

Developed since 1990s:

- Focused on data mining tasks characterized by large datasets described by large numbers of attributes
- KDD process:

- New learning tasks and efficient learning algorithms:
 - Learning predictive models: Bayesian network learning, SVMs, relational learning, ...
 - Learning descriptive patterns: association rule learning, subgroup discovery, ...

Data transformation:

- binary class values (positive vs. negative examples of Target class)
- Subgroup discovery:
 - a task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples
 - subgroups must be large and significant

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
O6-O13					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
O17	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
O19-O23					
O24	56	hypermetrope	yes	normal	NO

Subgroup discovery in High CHD Risk Group Detection

- Input: Patient records described by anamnestic, laboratory and ECG attributes
- **Task**: Find and characterize population subgroups with high CHD risk (large enough, distributionaly unusual)
- From **best induced descriptions**, five were selected by the expert as **most actionable** for CHD risk screening (by GPs): high-CHD-risk ← male & pos. fam. history & age > 46 high-CHD-risk ← female & bodymassIndex > 25 & age > 63 high-CHD-risk ← ... high-CHD-risk ← ...

(Gamberger & Lavrač, JAIR 2002)

Subgroup A2 for female patients:

high-CHD-risk ← female AND bodymassIndex > 25 AND age > 63

Supporting characteristics (computed using %2 statistical significance test): positive family history and hypertension. Women in this risk group typically have slightly increased LDL cholesterol values and normal but decreased HDL cholesterol values.

Gamberger & Lavrač, JAIR 2002

Subgroup discovery in functional genomics

- Functional genomics is a typical scientific discovery domain, studying genes and their functions
- Very large number of attributes (genes)
- Interesting subgroup describing patterns discovered by SD algorithm

CancerType = Leukemia

IF KIAA0128 = DIFF. EXPRESSED

AND prostoglandin d2 synthase = NOT_ DIFF. EXPRESSED

Interpretable by biologists

D. Gamberger, N. Lavrač, F. Železný, J. Tolar Journal of Biomedical Informatics 37(5):269-284, 2004

SD algorithms in Orange DM Platform

- Orange data mining toolkit
 - classification and subgroup discovery algorithms
 - data mining workflows
 - visualization

- SD Algorithms in Orange
 - SD (Gamberger & Lavrač, JAIR 2002)
 - Apriori-SD (Kavšek & Lavrač, AAI 2006)
 - CN2-SD (Lavrač et al., JMLR 2004)

Orange, WEKA, KNIME, RapidMiner, Orange4WS, ...

- include numerous data mining algorithms
- enable data and model visualization
- enable complex workflow construction

Data Mining Workflows for Open Data Science

- Workflows are executable visual representations of procedures
 - divided into smaller chunks of code (components)
 - organized as sequences of connected components.
- Suitable for representing complex scientific pipelines
 - by explicitly modeling dependencies of components
- Building scientific workflows consists of simple operations on workflow elements (drag, drop, connect), suitable for nonexperts

Orange, WEKA, KNIME, RapidMiner, Orange4WS, ...

- include numerous data mining algorithms
- enable data and model visualization
- enable complex workflow construction
- ... but do not include algorithm for mining complex structured data
 - ... developing efficient relational data mining algorithms and making them reusable is still a great challenge

Representation learning: A step in KDD process

KDD process:

Important steps:

- Manual data preprocessing
- Automated data transformation
- Representation learning = Automated data transformation, performed on manually preprocessed data
- Transformation requires handling heterogeneous data types
 - Data (feature vectors, documents, pictures, data streams, ...)
 - Background knowledge (multi-relational data tables, networks, text

Talk overview

- Advances in Relational Learning
 - Background: Machine Learning (ML)
 - Relational Learning (RL)
 - Semantic Relational Learning (SRL)
- Advances in Network Analysis for SRL
- Conclusions and future work

Relational Learning

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables, sets of logical facts, a graph, ...

Find: a classification model, a set of patterns

Relational Learning

- ILP, relational learning, relational data mining
 - Learning from complex multi-relational data

Relational representation of customers, orders and stores.

Relational Learning

- ILP, relational learning, relational data mining
 - Learning from complex multi-relational data
 - Learning from complex structured data: e.g., molecules and their biochemical properties

				CI	isto	mer						
		ID /	Zip	S ex	$_{\rm St}^{ m So}$	In con	ıe	A ge	Cl ub	$_{\mathrm{sp}}^{\mathrm{Re}}$		
		3478	34677	m	si	60-'	70	32	me	nr		
/	/	3479	43666	f	ma	80-9	90	45	nn	re		
/	0		order	Tr			1					
D D	Ш	der	D \	M	lode	ery	P M	ayı lod	nt e			
			\									
478	214	10267	12	I	egula	ar	C	ash				
478	344	16778	12	\le:	xpre	SS	[C]	heci	k			
478	472	28386	17	In	egula	ar	[c]	hec	k			
479	323	3444	17	ę:	xpre	SS	CI	redi	it			
479	347	5886	12	r)	gul	ar	CI	redi	it			
					ł							
					1				s	tore		
					Sto	re I	D	Siz	e	Туре		Locat
					12			\mathbf{sm}	all	franch	nise	city
					17			ları	ge	indep		rural
							- 1					1

Relational representation of customers, orders and stores.

Representation Learning in Relation Learning setting

- Relational learning is characterized by using background knowledge (domain knowledge) in the data mining process
- Representation learning = automated transformation of multirelational data into tabular data format

Two approaches:

- Propositionalization: data transformation into symbolic feature vectors
- Embeddings: data transformation into numeric feature vectors (out of scope of this talk)

Propositionalization approach to Relational Learning

Relational representation of customers, orders and stores.

Step 1 Propositionalization

- 1. construct relational features
- 2. construct a propositional table

·									and a state of			
	f1	f2	f3	f4	f5	f 6		1		1		\mathbf{fn}
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	in <mark>t</mark> o	0	0	1	1	1	0
g5	1	1	1	0	0 /	001	0	1	1	0	1	0
g 1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Propositionalization approach to Relational Learning

Relational representation of customers, orders and stores.

	f1	f2	f3	f4	f5	f 6		1		1		\mathbf{fn}
g1	1	0	0	1	1	1	0	0	1	0	1	1
g 2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 1 0	0	0	1	1	1	0
g5	1	1	1	0	0	01	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

- 1. construct relational features
- 2. construct a propositional table

model, patterns, ...

September 24, 2020

KI 2020, Bamberg

Propositionalization approach to Relational Learning: Relational subgroup discovery (RSD)

Relational representation of customers, orders and stores.

	f1	f2	f3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g 2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 1 0	0	0	1	1	1	0
g5	1	1	1	0	0	01	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1 Propositionalization

- 1. construct relational features
- 2. construct a propositional table

Step 2

Subgroup discovery

	f1	f2	f3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g 2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	roto	0	0	1	1	1	0
g5	1	1	1	0	0 4	01	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

target(A) : 'Doctor'(A), 'Italy'(A).

```
target(A) :-
    'Public'(A), 'Gold'(A).
```

```
target(A) :-
    'Poland'(A), 'Deposit'(A), 'Gold'(A).
```

```
target(A) :-
'Germany'(A), 'Insurance'(A).
```

```
target(A) :-
    'Service'(A), 'Germany'(A).
```

patterns (set of rules)

KI 2020, Bamberg

September 24, 2020

Propositionalization in Orange4WS

Relational Subgroup Discovery (RSD) (Železny and Lavrač, MLJ 2006)

- Propositionalization through efficient first-order feature construction
 f121(M):- hasAtom(M,A), atomType(A,21)
 - f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
- Transformation into tabular data form
 i.e. binary valued feature vectors
- Subgroup discovery using CN2-SD mutagenic(M) ← feature121(M), feature235(M)

September 24, 2020

Other propositionalization approaches

- Propositionalization algorithms
 - RSD
 - 1BC
 - RelF
 - **...**
 - Aleph ILP learner, with its featurize functionality
 - Wordification
 - Our work (Perovsek et al., Wordification: Propositionalization by unfolding relational data into bags of words. Expert Syst. Appl., 2015
 - Recent work of Zacerucha (ILP-2019)

Wordification: Generate simplified relational features

 Transform a relational database into a "document corpus": For each row in main table, concatenate its "words" with "words" generated for the other tables, linked through external keys

Perovšek et al. Wordification: Propositionalization by unfolding relational data into bags of words. Expert Syst. Appl., 2016

Generate simplified relational features: Wordification

 Transform a relational database into a document corpus: For each row in main table, concatenate its "words" with "words" generated for the other tables

Individual words (called word-items) are constructed as combinations of:

[table name]_[attribute name]_[value]

n-grams (conjuncts) are constructed to model feature dependencies

Generate simplified relational features: Wordification

 Transform a relational database into a document corpus: For each row in main table, concatenate its "words" with "words" generated for the other tables

- Outperforms all other propositionalization algorithms (RSD, ...)
 - Same or better accuracy
 - Significant speed up (10-100%)
- Further advances by Zaverucha (ILP-2019)

Talk overview

- Advances in Relational Learning
 - Background: Machine Learning (ML)
 - Relational Learning (RL)
 - Semantic Relational Learning (SRL)
- Advances in Network Analysis for SRL
- Conclusions and future work

Semantic Relational Learning

Semantic Relational Learning: Using ontologies as background knowledge in learning

data

- transaction data table, relational database, text documents, Web pages, ...
- one or more domain ontologies
- **Find:** a classification model, a set of patterns

Using domain ontologies as background knowledge, e.g., using the Gene Ontology (GO) GO is a database of terms, describing gene sets in terms of their functions (over 12,000) GO:0009308 amine metabolism processes (over 2,000) components (over 7,500) GO:0009309 GO:0006576 GO:0006520 Genes are annotated amine biobiogenic amine amino acid synthsis metabolism metabolism to GO terms Terms are connected GO:0008652 GO:00042401 amino acid (is_a, part_of) biogenic amine synthesis biosynthesis Levels represent terms generality

Using GO as background knowledge in DNA microarray data analysis

RSD: Propositionalization approach to Semantic Relational Learning

- 1. Take ontology terms represented as logical facts in Prolog, e.g component (gene2532, 'GO:0016020'). function (gene2534, 'GO:0030554'). process (gene2534, 'GO:0007243'). interaction (gene2534, gene4803).
- 2. Automatically generate generalized relational features:

- 3. Propositionalization: Determine truth values of features
- 4. Learn rules by a subgroup discovery algorithm CN2-SD

Construction of first order features, with support > *min_support*

f(7,A):-function(A,'GO:0046872'). f(8,A):-function(A,'GO:0004871'). f(11,A):-process(A,'GO:0007165'). f(14,A):-process(A,'GO:0044267'). f(15,A):-process(A,'GO:0050874'). f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). f(26,A):-component(A,'GO:0016021'). f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020') f(122,A):-interaction(A,B),function(B,'GO:0004872'). f(223,A):-interaction(A,B),function(B,'GO:0004871'), existential process(B,'GO:0009613'). f(224,A):-interaction(A,B),function(B,'GO:0016787'), component(B,'GO:0043231').

Step 3: RSD Propositionalization

diffexp g1 (gene64499) diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036) random g1 (gene7443) random g2 (gene9221) random g3 (gene2339) random g4 (gene9657) random g5 (gene19679)

	f1	f 2	f3	f4	f5	f6	•••				•••	fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g 3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g 5	1	1	1	0	0	1	0	1	1	0	1	0
g 1	0	0	1	1	0	0	0	1	0	0	0	1
g 2	1	1	0	0	1	1	0	1	0	1	1	1
g 3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

. . . .

KI 2020, Bamberg

. . . .

Step 4: RSD rule construction with CN2-SD

	f1	f2	f3	f4	f5	f6						fn	
g1	1	0	0	1	1	1	0	0	1	0	1	1	
g2	0	1	1	0	1	1	0	0	0	1	1	0	Over-
g 3	0	1	1	1	0	0	1	1	0	0	0	1	expressed
g4	1	1	1	0	1	1	0	0	1	1	1	0	IF
g5	1	1	1	0	0	1	0	1	1	0	1	0	f2 and f3
g1	0	0	1	1	0	0	0	1	0	0	0	1	[4,0]
g2	1	1	0	0	1	1	0	1	0	1	1	1	
g 3	0	0	0	0	1	0	0	1	1	1	0	0	
g4	1	0	1	1	1	0	1	0	0	1	0	1	

KI 2020, Bamberg

Other propositionalization approaches

- Propositionalization approaches for semantic data mining and heterogeneous information network (knowledge graph) analysis:
 - SDM-Aleph, Hedwig (Vavpetič et al.)
 - HinMine (Grčar et al. 2014, Kralj et al.)
 - NetSDM (Kralj et al.)

· · · ·

- Concatenate and normalize concatenated weighted feature vectors
- Can be used directly by a text mining algorithm
- Can be used as input layer to an embedding algorithm

- Advances in Relational Learning
 - Background: Machine Learning (ML)
 - Relational Learning (RL)
 - Semantic Relational Learning (SRL)

Advances in Network Analysis for SRL

Conclusions and future work

The challenge is to fill the current gap between semantic web and data science: Which part of the semantic web is most important to my current interests?

New challenge and methodology

- Take a large knowledge graph such as BioMine, or a Linked Open Data resource, such as Bio2RDF
- Use Semantic Relational Learning algorithm to mine experimental data with ontologies as background knowledge to get explanations for groups of TargetClass objects, e.g.
 ProstConcer (obvector of the prostConcer (obvector)

BreastCancer ← chromosome AND cell cycle

Reduce the complexity of the huge search space of ontology terms by network analysis based node filtering

(Kralj et al., JMLR 2019)

NetSDM Network analysis for feature reduction (Kralj et al. 2019)

- Use network analysis (Personalized PageRank) to estimate the importance of features (e.g., ontology terms)
- Reduce the complexity of the huge search space of ontology terms by network analysis based term filtering
- Same accuracy, up to 100% speed up

NetSDM algorithm outline

- 1. Estimate ontology term relevance
- 2. Delete terms with low relevance
- 3. Run semantic relational learning algorithm Hedwig on pruned ontolgy

Methodology: Step 1

Methodology: Step 2

Methodology: Step 3

Example: Analysis of ALL data using Gene Ontology

NetSDM:

- Personalized PageRank can be effectively used to decrease the size of the search space of Semantic Relational Learning algorithms
- Accuracy did not decrease even when significantly decreasing the size of the background knowledge to less than 5%.
- Time, taken to discover rules on pruned background knowledge, is shorted by a factor of 100

- Advances in Relational Learning
 - Background: Machine Learning (ML)
 - Relational Learning (RL)
 - Semantic Relational Learning (SRL)
- Advances in Network Analysis for SRL

Conclusions and future work

Our propositionalization approaches

- Can be effectively used for relational and semantic data mining, but are only applicable to individual centered representations (1-to-many, not many-to-many relations)
- Can be used for structured data flattening, as data preprocessing step for modern DM, e.g. deep learning
- Can be used as a data fusion mechanism when mining heterogeneous information networks (Grčar et al. 2014)
- A wordification approach to propositionalization is especially powerful (Perovšek et al. 2016), including visualization of relational data with word clouds

.... all these being implemented and made publicly reusable as complex **workflows in ClowdFlows**

- Current Semantic data mining scenario (addressed in this lecture): Mining empirical data with ontologies as background knowledge
 - abundant empirical data, but
 - relatively scarce background knowledge
- Future Semantic data mining scenario:
 - Given abundance of ontologies and semantically anotated data collections
 - e.g. Linked Open Data and large knowledge graphs, consisting of
 - billions of RDF triples
 - millions of links

Paradigm shift in Semantic Data Mining: Mining Linked Open

- We envision a paradigm shift from data mining (mining of empirical data) in standard data mining platforms to knowledge mining on the web
 - mining knowledge encoded in knowledge graphs,
 - constrained by annotated (empirical) data collections
- Results of Kralj et al. show to be promising for mining Linked Open Data
- Current work in mining knowledge graphs by Škrlj et al.

Summary: Semantic Relational Learning in context

