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Outline

e Problem of generality in Al
e Model-free Learners

e Model-based Solvers

e Systems 1 and 27

e Integration of learners and solvers:

> Learning symbolic representations from data
> Learning from symbolic representations

Ref: Model-free, model-based, and general intelligence. H. G., Proc. |JCAI 2018

H. Geffner, From model-free to model-based Al: Representation learning for planning, KI-2020, 9/2020



Al Programming and Problem of Generality

There was a time (60s, 70s, 80s) when Al was done mostly by programming:

e pick up a challenging task and domain X (humor, story understanding, ...)
e analyze/introspect/find out how task is solved

e capture this reasoning in a program

Great ideas and great books on programming and Al programming came out from
this work, but methodological problem:

e Programs written by hand were not robust or general
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From Programs to Learners and Solvers

e This problem led to methodological shift:

— from writing programs for ill-defined problems . . .
— to designing algorithms for well-defined mathematical tasks

e New general programs learners and solvers have a crisp functionality: both
can be seen as computing functions that map inputs into outputs

Input x = | FUNCTION f

— Output f(x)

e The algorithms are general in the sense that they are not tied to particular
examples but to classes of models and tasks expressed in mathematical form
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Learners (1)

Input © = | FUNCTION f | = Output f(x)

e In deep learning (DL) and deep reinforcement learning (DRL), training
results in function fy

e fp given by structure of neural network and adjustable parameters 6

> In DL, input & may be an image and output fy(x) a classification label
> In DRL, input x may be state of game, and output fy(x), value of state

e Parameters 6 learned by minimizing error function

> In DL, error depends on inputs and target outputs in training set
> In DRL, error depends on value of states and successor states

e Most common optimization algorithm is stochastic gradient descent
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Learners (2)

Input © = | FUNCTION f | = Output f(x)

e Excitement about Al due to successes in DL and DRL
> Breakthroughs in image understanding, speech recognition, Go, . ..
> Superhuman performance in Chess and Go from self-play alone

e The basic ideas underlying DL and DRL not new but from 80s and 90s

> Recently, more CPU power, more data, deeper nets, attractive problems

e DL and DLR remarkably powerful yet they

> require lots of training and data

> lack understanding

> are hard to understand as well

> are not trustworthy (self-driving cars?)
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Solvers

Input x = | FUNCTION f

— Qutput f(x)

Solvers derive output f(x) for given input x from model:

> SAT: z is a formula in CNF, f(x) = 1 if x satisfiable, else f(x) =0

> Classical planner: z is a planning problem P, and f(x) is plan that solves P
> Bayesian net: z is a query over Bayes Net and f(x) is the answer

> Constraint satisfaction, Markov decision processes, POMDPs, . ..

Generality: Solvers not tailored to particular examples

Expressivity: Some models very expressive,

“Al-Complete” (POMDPs)

Learners are solvers too: argmin, ), L(z, f,(x)) (Diff. programming)

Complexity: Computation of f(x) is (NP) hard;

x| not bounded

Challenge: Solvers shouldn't break just because x has many variables
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Learners vs Solvers

Input r —

FuNcTION f

— Qutput f(x)

e Learners require experience over related problems = but then fast

> They compute function f from training, then apply it

e Solvers deal with completely new problems x but need to think

> They compute f(x) for each input x from scratch

Thinking is hard but essential for dealing with new problems

Thinking can be done effectively with right computational ideas

Next: Thinking effectively in context of planning
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Classical Planning: Finding Plans in Huge Mental Mazes

Challenge: find path to goal in graph with # nodes exponential in # variables

Old Idea: If you don't know how to solve P, solve simpler problem P’, and use
solution of P’ for solving P (Polya, Minsky, Pearl)

e In monotonic relaxation P’ effects of actions on variables made monotonic
e Monotonicity makes relaxation P’ decomposable and therefore tractable

e Heuristic h(s) in P set to cost of plan from s in relaxation P’

Heuristic obtained and used to solve any problem P from scratch

No experience required in problems related to P

(McDermott 1996, Bonet, Loerincs, G. 1997, . . .)
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Goal Recognition

A B C
J S D
H F E

e Task: infer agent goal G € G from observations O on behavior
e Bayes' rule: P(G|O) = P(O|G) P(G)/P(0O), priors P(G) assumed given
o Likelihood P(O|G) set as monotonic function f of cost difference:

> ¢~ (G): cost of reaching G with plan incompatible with observations
> ¢T(G): cost of reaching G with plan compatible with observations

P(G|O) computed using Bayes’ rule and 2|G| calls to planner
No experience required in related problems

(Ramirez and G. 2009, 2010)
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Polynomial Algorithms for Exponential Spaces: Structure

o IW(1) is a breadth-first search that prunes states s that don’t make a feature
true for first time in the search, from given set of boolean features F

o IW(k) is IW(1) but over set F'*¥ made up of conjunctions of k features from F

> Most domains have small width w < 2 when goals are single atoms
> Any such instances solved optimally by IW(w) in low poly time
o IW(k) can work with simulators. No PDDL or goal needed. Variants:
> BFWS(R): SOTA planning algorithm which doesn’t use action structure

> Rollout IW(1): fast on-line planner that plays Atari from screen pixels

(Lipovetzky and G. 2012; Lipovetzky, Ramirez, G. 2015; Bandres, Bonet, G. 2018)
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Learners vs. Solvers (2)

e Rollout IW(1) planner and DQN learner perform comparably well in Atari

e They illustrate key difference between learners and solvers:

> DQN requires lots of training data and time, and then plays very fast
> Rollout IW(1) plays out of the box but thinking a bit before each move

This is a general characteristic:

e Learners require experience over related problems x but then are fast

> They compute function f from training, then apply it

e Solvers deal with completely new problems = but need to think

> They compute f(x) for each input x from scratch
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Learners and Solvers: System 1 and System 27

Dual process accounts of the human mind assume two processes (D. Kahneman:
Thinking, Fast and Slow, 2011; K. Stanovich: The Robot’s Rebellion, 2005)

System 1 System 2
(Intuitive Mind) (Analytical Mind)
fast slow
associative deliberative
uNCconscious conscious
effortless effortful
parallel serial
specialized general
| earners? Solvers?
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Learners and Solvers: Challenges

e Top goal: General two-way integration of System 1 and System 2 inference in
Al systems; i.e. learners and solvers

e Challenge: Learn representation of models used by solvers from data

> symbols and state variables, first-order models, abstractions

e Two dimensions in representation learning for planning:

> Learning from what: symbolic, non-symbolic, or black-box states

> Learning for what: model-free control, model-based control, generalized model
e Next: We address two points in this space:

> Learning first-order symbolic action model from black-box states
> Learning generalized planning models from symbolic action models
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Learning first-order models from the structure of state space

Can we learn this . . .

Move(fr,to,d): Move disk $d$ from disk S$fr$ to disk S$Sto$S
Static: LARGER (fr,d),LARGER (to,d) NEQ(fr,to)
Pre: clear(to),clear(d), on(d, fr),-on(d, to)
Eff: clear(fr),-clear(to),-on(d, fr),on(d, to)

... from this?
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Formulation: Target Language

e Planning instance in PDDL is P = (D,I) where D is first-order domain
(relations, action schemas) and I provides instance information (objects and

relations they satisfy initially)
e A planning instance P defines a state graph G

e Question:

> Can we learn P = (D, I) back from the graph G?7
> Can we learn P, = (D, I;), i =1,...,k from graphs G1,...,G?

(This means learning action schemas and relations from graphs)

Learned domain D can be used then to plan over any domain instances
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Formulation: From State Graph to First-Order PDDL

e Task: Find simplest instances P; = (D, I;) that account for input labeled graphs
G;, 1 =1,...,k, without knowing anything about D or the I;’s

e Space of possible domains D bounded by small values of a small number of
hyerparameters: number of action schemas, predicates, arities.

e Target language and bounds provide strong structural priors and make task
combinatorial, expressed and solved via SAT

Learning first-order symbolic representations from the structure of the state space,
B. Bonet, H. G., ECAI 2020
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Example: Hanoi. Input and Output

Move(fr,to,d):
Static: LARGER (fr,d),LARGER(to,d) NEQ(fr,to)
Pre: -clear(fr),clear(to),clear(d),Non(fr,d), -Non(d, fr),Non (d, to)
Eff: clear(fr),-clear(to),Non(d, fr), -Non (d, to)
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Example: Gripper. Input and Output

Move (from,to) :
Static: CONN (from, to)
Pre: at (from), —at (to)
Eff: —-at(from), at (to)

Drop(ball,room,gripper):

Static: PAIR(room,gripper)
Pre: at (room),Nfree(gripper),hold(gripper,ball), Nat (room,ball)
Eff: —-Nfree(gripper),-hold(gripper,ball), -Nat (room,ball)

Pick(ball,room,gripper) :
Static: PAIR(room,gripper)
Pre: at (room), -Nfree(gripper),-hold(gripper,ball), -Nat (room,ball)
Eff: Nfree(gripper),hold(gripper,ball),h Nat (room,ball)
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Example: Blocks. Input

Sl
AT ,/f"
AT .

A (A“
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Example: Blocks. Output

MovetoTable(x,y):
Static: NEQ(x,vVy)
Pre: —-Nclear (x),Nclear(y), Ntable-OR-Non (x,vy),Ntable-OR-Non (x, x)
Eff: —-Nclear(y), Ntable-OR-Non (x,x),Ntable-OR-Non (x,Vy)

MoveFromTable (x,y,d) :
Static: NEQ(x,vy),EQ(y,d)
Pre: —-Nclear (x),-Nclear (d), -Ntable-OR-Non (x,x),Ntable-OR-Non (x,Vy)
Eff: Nclear(d),Ntable-OR-Non (x, x), Ntable—-OR-Non (x,Vy)

Move(x,z,y):
Static: NEQ(x,z),NEQ(z,Vy),NEQ(x,V)
Pre: —-Nclear (x),Nclear(y),Nclear(z),Ntable-OR-Non (x, x),

Ntable-OR-Non (x, z) , -Ntable-OR-Non (x,Vy)
Eff: Nclear(z), Nclear(y),Ntable-OR-Non (x,vy), Ntable-OR-Non (x, z)
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Learning generalized planning models from action models

e General policies are for solving multiple planning instances at once

> General policy/strategy for solving any instance of Blocks world
> General policy for solving other domains or fragments

e Subtlety:

> different # and configs of objects, diff (ground) actions, diff state spaces

e Questions:

> How to represent general policies?
> How to derive and learn them?

e Questions relevant to planning, learning, and program synthesis; addressed in

recent work in generalized planning
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Generalized planning: Formulation using QNPs

e QNPs stand for qualitative numerical planning problems

e QNPs are propositional STRIPS problems extended with numerical variables n
that can be decreased ni and increased nt

e QNPs are decidable and solvable with FOND planners, unlike numerical planning

e E.g., general policy for achieving clear(x) in Blocks world:
-H,n(x) >0 +— H,n(z)l ; Hmn(x)>0+— -H

where H and n(x) for “holding a block™ and “# blocks above z"

How to get these features and policies in general?
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Learning the features and “abstract actions” using SAT Solver
e Inputs:

> CNF formula T'(S, F) encoding requirements over desired features
> S: sampled state transitions
> JF: pool of features computed from primitive predicates and general grammar

e Variables:

> selected(f) for each f € F, trueiff f € F, F C F

> Dj(s,t) true iff selected features distinguish s from t; p or n. = 0 true in one
> Ds(s, s, t,t") true iff selected features f distinguish transitions (s, s’), (¢, t")

e Formulas:
> Di(s,t) < V,;selected(f)
> Do(s,s’,t,t") < \/,selected(f)
> =Dq(s,t) = \/y—Da(s, s, t,t)
> Dj(s,t), when one of s and t is a goal state
Theorem (Bonet, Frances, G. 2019) T'(S, F) is SAT iff 3 set of features F' C F
and actions A over F' such that A is sound and complete relative to S.
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Example: General Policy for Achieving on(x,y)

e Data: 3 STRIPS instances, 420 state transitions in S, 657 features in F

o Features learned X (z held), H (other held), on(x,y); counters n(x), n(y)
o Abstract actions learned: E abbreviates - X A ~H

Pick-z : E,n(x) =0 — X,

Pick-above-z : EZ,n(x) > 0 — H,n(x)d,
Pick-above-y : E,n(y) >0 — H,n(y),
Put-z-on-y : X, n(y) =0 — —=-X,on(z,y),n(y)t,
Put-aside : H — —H.

v vV VvV VvV V

e Policy that solves all instances found with off-the-shelf (FOND) planner

If E,n(x) > 0,n(y) > 0 do Pick-above-z,
If H, =X, n(x) > 0,n(y) > 0 do Put-aside,
If H,-X,n(x) = 0,n(y) > 0 do Put-aside,
If E,n(x) =0,n(y) > 0 do Pick-above-y,
If H, =X, n(x) = 0,n(y) = 0 do Put-aside,
If E,n(x) =0,n(y) = 0 do Pick-above-z,
If X,-H,n(x) =0,n(y) =0 do Put-x-on-y.

v v VvV VvV VvV VvV VvV
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Wrap Up

e True breakthroughs in DL and DRL
e DL and DRL, however, deliver System 1 boxes only
e Main challenge is tight, two-way integration of learners and solvers

e Key problem is learning representation of models used by solvers from data

> Learning from what: symbolic, non-symbolic, or black-box states
> Learning for what: model-free control, model-based, generalized models

e Looked at two points in this space

> Learning first-order symbolic planning representations from state graphs
> Learning abstract models and general plans from small examples

e Plenty to do at the intersection of planning, representations, and learning
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Al and Social Impact

e System 2 not only necessary for Al systems; essential for people and societies
e Al far from human-level intelligence, yet it can be used for good or ill

e Ethical committees and Al principles good but not sufficient

e Markets and politics play our System 1, focused on the bottom line

e If we want good Al, we need a good and decent society, that engages our
System 2 and cares about the common good

“Need Al for social good 'cause natural intelligence is busy in other pursuits” :-)
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