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Outline

• Problem of generality in AI

• Model-free Learners

• Model-based Solvers

• Systems 1 and 2?

• Integration of learners and solvers:

. Learning symbolic representations from data

. Learning from symbolic representations

Ref: Model-free, model-based, and general intelligence. H. G., Proc. IJCAI 2018
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AI Programming and Problem of Generality

There was a time (60s, 70s, 80s) when AI was done mostly by programming:

• pick up a challenging task and domain X (humor, story understanding, ...)

• analyze/introspect/find out how task is solved

• capture this reasoning in a program

Great ideas and great books on programming and AI programming came out from
this work, but methodological problem:

• Programs written by hand were not robust or general
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From Programs to Learners and Solvers

• This problem led to methodological shift:

– from writing programs for ill-defined problems . . .
– to designing algorithms for well-defined mathematical tasks

• New general programs learners and solvers have a crisp functionality: both
can be seen as computing functions that map inputs into outputs

Input x =⇒ Function f =⇒ Output f(x)

• The algorithms are general in the sense that they are not tied to particular
examples but to classes of models and tasks expressed in mathematical form
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Learners (1)

Input x =⇒ Function f =⇒ Output f(x)

• In deep learning (DL) and deep reinforcement learning (DRL), training
results in function fθ

• fθ given by structure of neural network and adjustable parameters θ

. In DL, input x may be an image and output fθ(x) a classification label

. In DRL, input x may be state of game, and output fθ(x), value of state

• Parameters θ learned by minimizing error function

. In DL, error depends on inputs and target outputs in training set

. In DRL, error depends on value of states and successor states

• Most common optimization algorithm is stochastic gradient descent
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Learners (2)

Input x =⇒ Function f =⇒ Output f(x)

• Excitement about AI due to successes in DL and DRL

. Breakthroughs in image understanding, speech recognition, Go, . . .

. Superhuman performance in Chess and Go from self-play alone

• The basic ideas underlying DL and DRL not new but from 80s and 90s

. Recently, more CPU power, more data, deeper nets, attractive problems

• DL and DLR remarkably powerful yet they

. require lots of training and data

. lack understanding

. are hard to understand as well

. are not trustworthy (self-driving cars?)

H. Geffner, From model-free to model-based AI: Representation learning for planning, KI-2020, 9/2020 6



Solvers

Input x =⇒ Function f =⇒ Output f(x)

• Solvers derive output f(x) for given input x from model:

. SAT: x is a formula in CNF, f(x) = 1 if x satisfiable, else f(x) = 0

. Classical planner: x is a planning problem P , and f(x) is plan that solves P

. Bayesian net: x is a query over Bayes Net and f(x) is the answer

. Constraint satisfaction, Markov decision processes, POMDPs, . . .

• Generality: Solvers not tailored to particular examples

• Expressivity: Some models very expressive, “AI-Complete” (POMDPs)

• Learners are solvers too: argminw
∑
x∈D L(x, fw(x)) (Diff. programming)

• Complexity: Computation of f(x) is (NP) hard; |x| not bounded

• Challenge: Solvers shouldn’t break just because x has many variables
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Learners vs Solvers

Input x =⇒ Function f =⇒ Output f(x)

• Learners require experience over related problems x but then fast

. They compute function f from training, then apply it

• Solvers deal with completely new problems x but need to think

. They compute f(x) for each input x from scratch

Thinking is hard but essential for dealing with new problems

Thinking can be done effectively with right computational ideas

Next: Thinking effectively in context of planning
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Classical Planning: Finding Plans in Huge Mental Mazes

Challenge: find path to goal in graph with # nodes exponential in # variables

Old Idea: If you don’t know how to solve P , solve simpler problem P ′, and use
solution of P ′ for solving P (Polya, Minsky, Pearl)

• In monotonic relaxation P ′, effects of actions on variables made monotonic

• Monotonicity makes relaxation P ′ decomposable and therefore tractable

• Heuristic h(s) in P set to cost of plan from s in relaxation P ′

Heuristic obtained and used to solve any problem P from scratch

No experience required in problems related to P

(McDermott 1996, Bonet, Loerincs, G. 1997, . . . )

H. Geffner, From model-free to model-based AI: Representation learning for planning, KI-2020, 9/2020 9



Goal Recognition
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• Task: infer agent goal G ∈ G from observations O on behavior

• Bayes’ rule: P (G|O) = P (O|G)P (G)/P (O), priors P (G) assumed given

• Likelihood P (O|G) set as monotonic function f of cost difference:

. c−(G): cost of reaching G with plan incompatible with observations

. c+(G): cost of reaching G with plan compatible with observations

P (G|O) computed using Bayes’ rule and 2|G| calls to planner

No experience required in related problems

(Ramirez and G. 2009, 2010)
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Polynomial Algorithms for Exponential Spaces: Structure

• IW(1) is a breadth-first search that prunes states s that don’t make a feature
true for first time in the search, from given set of boolean features F

• IW(k) is IW(1) but over set F k made up of conjunctions of k features from F

. Most domains have small width w ≤ 2 when goals are single atoms

. Any such instances solved optimally by IW(w) in low poly time

• IW(k) can work with simulators. No PDDL or goal needed. Variants:

. BFWS(R): SOTA planning algorithm which doesn’t use action structure

. Rollout IW(1): fast on-line planner that plays Atari from screen pixels

(Lipovetzky and G. 2012; Lipovetzky, Ramirez, G. 2015; Bandres, Bonet, G. 2018)

H. Geffner, From model-free to model-based AI: Representation learning for planning, KI-2020, 9/2020 11



Learners vs. Solvers (2)

• Rollout IW(1) planner and DQN learner perform comparably well in Atari

• They illustrate key difference between learners and solvers:

. DQN requires lots of training data and time, and then plays very fast

. Rollout IW(1) plays out of the box but thinking a bit before each move

This is a general characteristic:

• Learners require experience over related problems x but then are fast

. They compute function f from training, then apply it

• Solvers deal with completely new problems x but need to think

. They compute f(x) for each input x from scratch
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Learners and Solvers: System 1 and System 2?

Dual process accounts of the human mind assume two processes (D. Kahneman:
Thinking, Fast and Slow, 2011; K. Stanovich: The Robot’s Rebellion, 2005)

System 1 System 2
(Intuitive Mind) (Analytical Mind)

fast slow
associative deliberative

unconscious conscious
effortless effortful
parallel serial

specialized general
. . . . . .

Learners? Solvers?

H. Geffner, From model-free to model-based AI: Representation learning for planning, KI-2020, 9/2020 13



Learners and Solvers: Challenges

• Top goal: General two-way integration of System 1 and System 2 inference in
AI systems; i.e. learners and solvers

• Challenge: Learn representation of models used by solvers from data

. symbols and state variables, first-order models, abstractions

• Two dimensions in representation learning for planning:

. Learning from what: symbolic, non-symbolic, or black-box states

. Learning for what: model-free control, model-based control, generalized model

• Next: We address two points in this space:

. Learning first-order symbolic action model from black-box states

. Learning generalized planning models from symbolic action models
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Learning first-order models from the structure of state space

Can we learn this . . .

Move(fr,to,d): Move disk $d$ from disk $fr$ to disk $to$
Static: LARGER(fr,d),LARGER(to,d) NEQ(fr,to)
Pre: clear(to),clear(d), on(d,fr),-on(d,to)
Eff: clear(fr),-clear(to),-on(d,fr),on(d,to)

. . . from this?
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Formulation: Target Language

• Planning instance in PDDL is P = 〈D, I〉 where D is first-order domain
(relations, action schemas) and I provides instance information (objects and
relations they satisfy initially)

• A planning instance P defines a state graph G

• Question:

. Can we learn P = 〈D, I〉 back from the graph G?

. Can we learn Pi = 〈D, Ii〉, i = 1, . . . , k from graphs G1, . . . , Gk?

(This means learning action schemas and relations from graphs)

Learned domain D can be used then to plan over any domain instances
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Formulation: From State Graph to First-Order PDDL

• Task: Find simplest instances Pi= 〈D, Ii〉 that account for input labeled graphs
Gi, i = 1, . . . , k, without knowing anything about D or the Ii’s

• Space of possible domains D bounded by small values of a small number of
hyerparameters: number of action schemas, predicates, arities.

• Target language and bounds provide strong structural priors and make task
combinatorial, expressed and solved via SAT

Learning first-order symbolic representations from the structure of the state space,
B. Bonet, H. G., ECAI 2020
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Example: Hanoi. Input and Output

Move(fr,to,d):

Static: LARGER(fr,d),LARGER(to,d) NEQ(fr,to)
Pre: -clear(fr),clear(to),clear(d),Non(fr,d),-Non(d,fr),Non(d,to)
Eff: clear(fr),-clear(to),Non(d,fr),-Non(d,to)
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Example: Gripper. Input and Output

Move

Pick

Pick

Pick

Pick

Pick
Pick

Move

Drop

Pick

Pick

Move

Drop

Pick

Pick

Move

Drop
Pick

Pick

Move

Drop

Pick

Pick

Move

Drop

Pick

Pick

Move

Drop

Pick

Pick

Move
Drop

Drop

Move

Drop

Drop

Move

Move

Drop

Drop

Drop

Move

Drop

Drop

Move

Move

Drop

Drop

Drop
Move

Move

Drop

Drop

Drop

Move

Move

Drop

Move

Drop

Move

DropPick
Pick

Move

Move

Drop
Drop

Move

Drop

Drop

Move

DropDrop

Move

Drop

Drop

Pick

Pick

Move

Move

Drop

Drop

Move

Drop

Drop

Pick

Pick

Move
Move

PickPick

Pick

Pick

Pick

Drop

Move

Pick

Drop

Move

Move

Pick

Pick

Pick
Pick

Pick

Move

Drop

Pick

Drop

Move

Pick

Drop

Move

Pick

Drop

Move

Pick

Drop

Move

Pick

Drop

Move

Move

Pick

Pick

Pick

Pick

Pick

Move

Drop

Pick

Drop

Move

Pick

Move

Drop

Pick

Drop

Move

Drop

Move

Pick

PickPick

Pick
Pick

Move

Drop

Move

Pick

Drop

Move

Pick

Pick

Pick

Pick

Pick

Move

Drop

Move

Pick

Move

Drop

Pick
Move

Drop

Pick

Drop

MovePick

Drop

Move

Pick

Drop

Move

Pick

Pick

Pick

Pick

Pick

Move

Drop

Move

Pick

Move

Drop

Pick

Drop

Move

Pick

Drop

Drop

Move

Drop

Drop

Move

Drop

Drop

Move

Move

Pick

Pick

Drop
Drop

Move

Drop

Drop

Move

Move

Pick
Pick

Drop

Drop

Move

Move

Pick

Pick

Move

Drop

Drop

Move

Drop

Drop

Drop

Move

Drop

Move

Drop

Move

Drop

Move

Move

Drop

Drop

Move

Drop

Drop

Drop

Move

Drop

Move

Move

Drop

Drop

Move

Drop

Drop

Pick

Move

Pick

Drop

Pick Move

Pick

Drop

Pick

Move

Pick

Drop

Pick
Move

Pick

Drop

Pick

Move

Pick

Drop Pick

Move

Pick

Drop

Pick

Pick

Pick

Pick

Pick
Pick

Move
Move

Move(from,to):

Static: CONN(from,to)
Pre: at(from),-at(to)
Eff: -at(from),at(to)

Drop(ball,room,gripper):

Static: PAIR(room,gripper)
Pre: at(room),Nfree(gripper),hold(gripper,ball),Nat(room,ball)
Eff: -Nfree(gripper),-hold(gripper,ball),-Nat(room,ball)

Pick(ball,room,gripper):

Static: PAIR(room,gripper)
Pre: at(room),-Nfree(gripper),-hold(gripper,ball),-Nat(room,ball)
Eff: Nfree(gripper),hold(gripper,ball),Nat(room,ball)
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Example: Blocks. Input

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack Stack

Newtower

Move

Move

Stack Stack

StackStack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

StackStack

StackStack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Move

Move

Stack

Stack

Stack

Stack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

MoveStack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

MoveStack

Newtower

Move

Stack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

Move Stack

Newtower

Move Stack

Newtower

Newtower

Move

Move

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move

Stack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move Stack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

MoveStack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move Stack

Newtower

Newtower

Move

Move

Newtower

Move

Stack

Newtower

Move

Stack

Newtower

MoveStack

Newtower

MoveStack

Newtower

Move

Stack

Newtower

Move Stack

Newtower

Move Stack

Newtower

Move

Stack

Newtower

Move

Stack

Newtower

MoveStack

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

NewtowerNewtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

Newtower

NewtowerNewtower

Newtower Newtower

Newtower

Newtower

H. Geffner, From model-free to model-based AI: Representation learning for planning, KI-2020, 9/2020 20



Example: Blocks. Output

MovetoTable(x,y):

Static: NEQ(x,y)
Pre: -Nclear(x),Nclear(y),-Ntable-OR-Non(x,y),Ntable-OR-Non(x,x)
Eff: -Nclear(y),-Ntable-OR-Non(x,x),Ntable-OR-Non(x,y)

MoveFromTable(x,y,d):

Static: NEQ(x,y),EQ(y,d)
Pre: -Nclear(x),-Nclear(d),-Ntable-OR-Non(x,x),Ntable-OR-Non(x,y)
Eff: Nclear(d),Ntable-OR-Non(x,x),-Ntable-OR-Non(x,y)

Move(x,z,y):

Static: NEQ(x,z),NEQ(z,y),NEQ(x,y)
Pre: -Nclear(x),Nclear(y),-Nclear(z),Ntable-OR-Non(x,x),

Ntable-OR-Non(x,z),-Ntable-OR-Non(x,y)
Eff: Nclear(z),-Nclear(y),Ntable-OR-Non(x,y),-Ntable-OR-Non(x,z)
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Learning generalized planning models from action models

• General policies are for solving multiple planning instances at once

. General policy/strategy for solving any instance of Blocks world

. General policy for solving other domains or fragments

• Subtlety:

. different # and configs of objects, diff (ground) actions, diff state spaces

• Questions:

. How to represent general policies?

. How to derive and learn them?

• Questions relevant to planning, learning, and program synthesis; addressed in
recent work in generalized planning

H. Geffner, From model-free to model-based AI: Representation learning for planning, KI-2020, 9/2020 22



Generalized planning: Formulation using QNPs

• QNPs stand for qualitative numerical planning problems

• QNPs are propositional STRIPS problems extended with numerical variables n
that can be decreased n↓ and increased n↑

• QNPs are decidable and solvable with FOND planners, unlike numerical planning

• E.g., general policy for achieving clear(x) in Blocks world:

¬H,n(x) > 0 7→ H,n(x)↓ ; H,n(x) > 0 7→ ¬H

where H and n(x) for “holding a block” and “# blocks above x”

How to get these features and policies in general?
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Learning the features and “abstract actions” using SAT Solver

• Inputs:

. CNF formula T (S,F) encoding requirements over desired features

. S: sampled state transitions

. F : pool of features computed from primitive predicates and general grammar

• Variables:

. selected(f) for each f ∈ F , true iff f ∈ F , F ⊆ F

. D1(s, t) true iff selected features distinguish s from t; p or n = 0 true in one

. D2(s, s
′, t, t′) true iff selected features f distinguish transitions (s, s′), (t, t′)

• Formulas:

. D1(s, t) ⇔
∨
f selected(f)

. D2(s, s
′, t, t′) ⇔

∨
f selected(f)

. ¬D1(s, t) ⇒
∨
t′ ¬D2(s, s

′, t, t′)

. D1(s, t), when one of s and t is a goal state

Theorem (Bonet, Frances, G. 2019) T (S,F) is SAT iff ∃ set of features F ⊆ F
and actions A over F such that A is sound and complete relative to S.
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Example: General Policy for Achieving on(x, y)

• Data: 3 STRIPS instances, 420 state transitions in S, 657 features in F

• Features learned X (x held), H (other held), on(x, y); counters n(x), n(y)

• Abstract actions learned: E abbreviates ¬X ∧ ¬H

. Pick-x : E, n(x) = 0 7→ X,

. Pick-above-x : E, n(x) > 0 7→ H,n(x)↓,

. Pick-above-y : E, n(y) > 0 7→ H,n(y)↓,

. Put-x-on-y : X,n(y) = 0 7→ ¬X, on(x, y), n(y)↑,

. Put-aside : H 7→ ¬H.

• Policy that solves all instances found with off-the-shelf (FOND) planner

. If E, n(x) > 0, n(y) > 0 do Pick-above-x,

. If H,¬X,n(x) > 0, n(y) > 0 do Put-aside,

. If H,¬X,n(x) = 0, n(y) > 0 do Put-aside,

. If E, n(x) = 0, n(y) > 0 do Pick-above-y,

. If H,¬X,n(x) = 0, n(y) = 0 do Put-aside,

. If E, n(x) = 0, n(y) = 0 do Pick-above-x,

. If X,¬H,n(x) = 0, n(y) = 0 do Put-x-on-y.
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Wrap Up

• True breakthroughs in DL and DRL

• DL and DRL, however, deliver System 1 boxes only

• Main challenge is tight, two-way integration of learners and solvers

• Key problem is learning representation of models used by solvers from data

. Learning from what: symbolic, non-symbolic, or black-box states

. Learning for what: model-free control, model-based, generalized models

• Looked at two points in this space

. Learning first-order symbolic planning representations from state graphs

. Learning abstract models and general plans from small examples

• Plenty to do at the intersection of planning, representations, and learning
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AI and Social Impact

• System 2 not only necessary for AI systems; essential for people and societies

• AI far from human-level intelligence, yet it can be used for good or ill

• Ethical committees and AI principles good but not sufficient

• Markets and politics play our System 1, focused on the bottom line

• If we want good AI, we need a good and decent society, that engages our
System 2 and cares about the common good

“Need AI for social good ’cause natural intelligence is busy in other pursuits” :-)

H. Geffner, From model-free to model-based AI: Representation learning for planning, KI-2020, 9/2020 27


